数据决策:这个生意还能不能做?
不知道大家有没有留意到这个现象,现在全民都在搞直播。以前说电商是一个行业,现在每个行业都在电商化。线上直播带货,卖货,不论是商家自己搞也好,还是和某个大V合作,本质上都是一种电商销售行为。
之前听到一个新闻报道法院开了一场直播,直播试睡员体验在凶宅里试睡。为了营造凶宅不凶的感觉,整个直播间氛围很温馨,这也是一个电商行为,连法院为了能卖掉房子也是拼了。
可推测,大数据慢慢也会和电商一样,不是大数据行业,而是一切行业数据化。就像电商一样,人人都能用电商思维、方法、套路去销售自己的产品,那么人人也都能利用数据去解决或者辅助决策生活中遇到的事情。
举个栗子……
01
栗子1:奶茶这门生意还能不能做。
熟悉的小伙伴都知道,杭州最大的奶茶店不是蜜雪冰城,而是一点点。我公司同事们都特别爱喝,尤其是遇到谁帮了谁的忙,口头禅就是“我请你喝一点点啊”。有天,我听到两个技术同事在讨论想花50w投资开一家一点点,但是不知道这个生意还能不能做。
秉承着没有调研就没有发言权的原则,我决定去调研一下这个事情。
于是我找到了住所附近的一家一点点奶茶店,去它门口蹲点,查看客流量、出单数等情况,分析估算出一家店的营收,多久回本。最初设定的要收集的指标包括店门口经过的人、进店消费的人,后来发现这两个指标工作量比较大,且采集的误差比较大,所以我就改成了收集进店人数和机器出单数据。
用视频拍下来店门口的人流情况和出单情况之后,再去数人头以及出单数,接下来就是做一个简单的数据分析,也就是加减乘除。
最终得出数据:一共进店145人,平均5分钟出单24杯,一个小时288杯。
按照喝奶茶的高峰期时间段下午2点到9点,共7个小时,一天共卖7*288=2016杯。
这其中一大半被外卖员拎走了,搜集一下外卖平台每月的出单数,美团6604单,饿了么2619单,共6604+2619=9223单,平均每天307单。
最低配送金额15元,一点点的平均单价是15元,每一单按照3-4杯,因为按照外卖店奶茶的行为习惯来看,大多数情况下不会单点一杯。
那么平均每单3.5,外卖一天307*3.5=1074杯,那么计算出店内消费2016-1074=942杯。店内消费利润50%左右,外卖平台利润35%,每天利润942*15*0.5+1074*15*0.35=12703.5元。
接下来扣除成本。一个店铺按照10个员工,每个员工工资平均6000元/人,一天支付工资2000元,不同区房租价格不同,平均下来房租一年40w一天1000元左右,那么一家店每天的收入是9703.5元,每个月盈利29w左右,投资50w,大概2个月就能回本。
这样一看是一门不错的生意,别急,这只是一家店的分析情况,而且我发现还是我所在区域排行榜第一的一家店。如果想更保险,还需要多考察,综合考虑店铺的火爆程度,店铺的地址等因素对店内客流的影响。
其实这就是一个简单朴实而又很实用的数据搜集,数据分析的方法。不论分析结果正确与否,起码方法肯定是对的。
刘润老师说过,结果=行为*概率。这一操作,就是在提升事情结果发生的概率。
我们也可以学着利用数据提高自己做事成功的概率!
02
栗子2:评判一场直播下来结果如何。
开头我们讲到了全民直播,每个人直播的目的大有不同。那么一场直播下来,如何利用数据分析一下直播效果如何?接下来改进点有哪些呢?
下面分享一个提升直播效益的小案例,希望能够给到做过直播想要复盘提升的读者一些思路。
假如某一个职场教育机构,想通过直播提升用户的付费转化率。但是最终发现直播做了那么多,付费转化率没啥提升,想知道如何做优化?
数据分析的精髓之处就是大胆猜测小心验证。所以我们可以猜测直播转化率不行可能有以下几个原因:直播的时间有问题?直播选择的话题不太符合待转化产品?来参加直播的人群不是产品的受众?
逐步根据假设将这个大问题拆分为比较清晰的、可量化解决的小问题。其实这一步的做法类似于费米估算的思维方法。
数据分析的目的是提升直播的转化率,我们可以把这个问题转化为分析直播和人。
接下来我们需要根据拆分搜集数据、准备数据,将数据填充到对应的分析模块中。
对于拆解的问题,可以归类为几种可能的结果,针对结果分析可能的原因。
在构建分析逻辑的时候,可能两个问题之间会有关联,例如:新用户对某个直播话题感兴趣,老用户不一定感兴趣。针对这样的我们需要再做交叉分析,我们秉承的原则是哪类情况出现的多就优先解决哪类问题,选择主要的问题去解决就好,不然思绪越多也就越纠结。
数据未来会成为我们每个人都可用的工具,就像大数据常喊的口号:一切数据业务化,一切业务数据化!未来人人都是数据分析师!
本文作者 @金豌豆
版权声明
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处。如若内容有涉嫌抄袭侵权/违法违规/事实不符,请点击 举报 进行投诉反馈!