爬虫学习之一个简单的网络爬虫

概述

这是一个网络爬虫学习的技术分享,主要通过一些实际的案例对爬虫的原理进行分析,达到对爬虫有个基本的认识,并且能够根据自己的需要爬到想要的数据。有了数据后可以做数据分析或者通过其他方式重新结构化展示。

什么是网络爬虫

网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为网页追逐者),是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本。另外一些不常使用的名字还有蚂蚁、自动索引、模拟程序或者蠕虫。via 百度百科网络爬虫

网络蜘蛛(Web spider)也叫网络爬虫(Web crawler),蚂蚁(ant),自动检索工具(automatic indexer),或者(在FOAF软件概念中)网络疾走(WEB scutter),是一种“自动化浏览网络”的程序,或者说是一种网络机器人。它们被广泛用于互联网搜索引擎或其他类似网站,以获取或更新这些网站的内容和检索方式。它们可以自动采集所有其能够访问到的页面内容,以供搜索引擎做进一步处理(分检整理下载的页面),而使得用户能更快的检索到他们需要的信息。via 维基百科网络蜘蛛

以上是百度百科和维基百科对网络爬虫的定义,简单来说爬虫就是抓取目标网站内容的工具,一般是根据定义的行为自动进行抓取,更智能的爬虫会自动分析目标网站结构类似与搜索引擎的爬虫,我们这里只讨论基本的爬虫原理。

爬虫工作原理

网络爬虫框架主要由控制器解析器索引库三大部分组成,而爬虫工作原理主要是解析器这个环节,解析器的主要工作是下载网页,进行页面的处理,主要是将一些JS脚本标签、CSS代码内容、空格字符、HTML标签等内容处理掉,爬虫的基本工作是由解析器完成。所以解析器的具体流程是:

入口访问->下载内容->分析结构->提取内容

分析爬虫目标结构

这里我们通过分析一个网站[落网:http://luoo.net] 对网站内容进行提取来进一步了解!

第一步 确定目的
抓取目标网站的某一期所有音乐

第二步 分析页面结构
访问落网的某一期刊,通过Chrome的开发者模式查看播放列表中的歌曲,右侧用红色框线圈出来的是一些需要特别注意的语义结构,见下图所示:

以上红色框线圈出的地方主要有歌曲名称,歌曲的编号等,这里并没有看到歌曲的实际文件地址,所以我们继续查看,点击某一个歌曲就会立即在浏览器中播放,这时我们可以看到在Chrome的开发者模式的Network中看到实际请求的播放文件,如下图所示:

根据以上分析我们可以得到播放清单的位置和音乐文件的路径,接下来我们通过Python来实现这个目的。

实现爬虫

Python环境安装请自行Google

主要依赖第三方库

  1. Requests(http://www.python-requests.org) 用来发起请求

  2. BeautifulSoup(bs4) 用来解析HTML结构并提取内容

  3. faker(http://fake-factory.readthedocs.io/en/stable/)用来模拟请求UA(User-Agent

主要思路是分成两部分,第一部分用来发起请求分析出播放列表然后丢到队列中,第二部分在队列中逐条下载文件到本地,一般分析列表速度更快,下载速度比较慢可以借助多线程同时进行下载。

主要代码如下:

# -*- coding: utf-8 -*-'''by sudo rm -rf  http://imchenkun.com'''import osimport requestsfrom bs4 import BeautifulSoupimport randomfrom faker import Factoryimport Queueimport threadingfake = Factory.create()luoo_site = 'http://www.luoo.net/music/'luoo_site_mp3 = 'http://luoo-mp3.kssws.ks-cdn.com/low/luoo/radio%s/%s.mp3'proxy_ips = [    '27.15.236.236'    ] # 替换自己的代理IPheaders = {    'Connection': 'keep-alive',    'User-Agent': fake.user_agent()    }def random_proxies():    ip_index = random.randint(0, len(proxy_ips)-1)    res = { 'http': proxy_ips[ip_index] }    return resdef fix_characters(s):    for c in ['', ':', '"', '/', '\\\\', '|', '?', '*']:        s = s.replace(c, '')    return sclass LuooSpider(threading.Thread):    def __init__(self, url, vols, queue=None):        threading.Thread.__init__(self)        print '[luoo spider]'        print '=' * 20        self.url = url        self.queue = queue        self.vol = '1'        self.vols = vols    def run(self):        for vol in self.vols:            self.spider(vol)        print '\\ncrawl end\\n\\n'        def spider(self, vol):        url = luoo_site + vol        print 'crawling: ' + url + '\\n'        res = requests.get(url, proxies=random_proxies())                soup = BeautifulSoup(res.content, 'html.parser')        title = soup.find('span', attrs={'class': 'vol-title'}).text        cover = soup.find('img', attrs={'class': 'vol-cover'})['src']        desc = soup.find('div', attrs={'class': 'vol-desc'})        track_names = soup.find_all('a', attrs={'class': 'trackname'})        track_count = len(track_names)        tracks = []        for track in track_names:            _id = str(int(track.text[:2])) if (int(vol) Github地址:https://github.com/imchenkun/ick-spider/blob/master/luoospider.py### 总结通过本文我们基本了解了网络爬虫的知识,对网络爬虫工作原理认识的同时我们实现了一个真实的案例场景,这里主要是使用一些基础的第三方Python库来帮助我们实现爬虫,基本上演示了网络爬虫框架中基本的核心概念。通常工作中我们会使用一些比较优秀的爬虫框架来快速的实现需求,比如 scrapy框架,接下来我会通过使用Scrapy这类爬虫框架来实现一个新的爬虫来加深对网络爬虫的理解!**特别申明:本文所提到的落网是我本人特别喜欢的一个音乐网站,本文只是拿来进行爬虫的技术交流学习,读者涉及到的所有侵权问题都与本人无关****本文首发在sudo rm -rf 采用署名(BY)-非商业性使用(NC)-禁止演绎(ND) 转载请注明原作者**--EOF--#Python#

版权声明

本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处。如若内容有涉嫌抄袭侵权/违法违规/事实不符,请点击 举报 进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部