[Leetcode] Backtracking回溯法(又称DFS,递归)全解
回溯全集
回溯是啥
用爬山来比喻回溯,好比从山脚下找一条爬上山顶的路,起初有好几条道可走,当选择一条道走到某处时,又有几条岔道可供选择,只能选择其中一条道往前走,若能这样子顺利爬上山顶则罢了,否则走到一条绝路上时,只好返回到最近的一个路口,重新选择另一条没走过的道往前走。如果该路口的所有路都走不通,只得从该路口继续回返。照此规则走下去,要么找到一条到达山顶的路,要么最终试过所有可能的道,无法到达山顶。
回溯是一种穷举,但与brute force有一些区别,回溯带了两点脑子的,并不多,brute force一点也没带。
第一点脑子是回溯知道回头;相反如果是brute force,发现走不通立刻跳下山摔死,换第二条命从头换一条路走。
第二点脑子是回溯知道剪枝;如果有一条岔路上放了一坨屎,那这条路我们不走,就可以少走很多不必要走的路。
还有一些爱混淆的概念:递归,回溯,DFS。
回溯是一种找路方法,搜索的时候走不通就回头换路接着走,直到走通了或者发现此山根本不通。
DFS是一种开路策略,就是一条道先走到头,再往回走一步换一条路走到头,这也是回溯用到的策略。在树和图上回溯时人们叫它DFS。
递归是一种行为,回溯和递归如出一辙,都是一言不合就回到来时的路,所以一般回溯用递归实现;当然也可以不用,用栈。
以下以回溯统称,因为这个词听上去很文雅。
识别回溯
判断回溯很简单,拿到一个问题,你感觉如果不穷举一下就没法知道答案,那就可以开始回溯了。
一般回溯的问题有三种:
Find a path to success 有没有解
Find all paths to success 求所有解
求所有解的个数
求所有解的具体信息
Find the best path to success 求最优解
理解回溯:给一堆选择, 必须从里面选一个. 选完之后我又有了新的一组选择. This procedure is repeated over and over until you reach a final state. If you made a good sequence of choices, your final state is a goal state; if you didn't, it isn't.
回溯可以抽象为一棵树,我们的目标可以是找这个树有没有good leaf,也可以是问有多少个good leaf,也可以是找这些good leaf都在哪,也可以问哪个good leaf最好,分别对应上面所说回溯的问题分类。
good leaf都在leaf上。good leaf是我们的goal state,leaf node是final state,是解空间的边界。
对于第一类问题(问有没有解),基本都是长着个样子的,理解了它,其他类别迎刃而解:
boolean solve(Node n) { if n is a leaf node { if the leaf is a goal node, return true else return false } else { for each child c of n { if solve(c) succeeds, return true } return false }}
请读以下这段话以加深理解:
Notice that the algorithm is expressed as a boolean function. This is essential to understanding the algorithm. If solve(n) is true, that means node n is part of a solution--that is, node n is one of the nodes on a path from the root to some goal node. We say that n is solvable. If solve(n) is false, then there is no path that includes n to any goal node.
还不懂的话请通读全文吧:Backtracking - David Matuszek
关于回溯的三种问题,模板略有不同,
第一种,返回值是true/false。
第二种,求个数,设全局counter,返回值是void;求所有解信息,设result,返回值void。
第三种,设个全局变量best,返回值是void。
第一种:
boolean solve(Node n) { if n is a leaf node { if the leaf is a goal node, return true else return false } else { for each child c of n { if solve(c) succeeds, return true } return false }}
第二种:
void solve(Node n) { if n is a leaf node { if the leaf is a goal node, count++, return; else return } else { for each child c of n { solve(c) } }}
第三种:
void solve(Node n) { if n is a leaf node { if the leaf is a goal node, update best result, return; else return } else { for each child c of n { solve(c) } }}
题目
八皇后 N-Queens
问题
1.给个n,问有没有解;
2.给个n,有几种解;(Leetcode N-Queens II)
3.给个n,给出所有解;(Leetcode N-Queens I)
解答
1.有没有解
怎么做:一行一行的放queen,每行尝试n个可能,有一个可达,返回true;都不可达,返回false.
边界条件leaf:放完第n行 或者 该放第n+1行(出界,返回)
目标条件goal:n行放满且isValid,即目标一定在leaf上
helper函数:
boolean solve(int i, int[][] matrix)
在进来的一瞬间,满足property:第i行还没有被放置,前i-1行放置完毕且valid
solve要在给定的matrix上试图给第i行每个位置放queen。
public static boolean solve1(int i, List matrix, int n) { if (i == n) { if (isValid(matrix)) return true; return false; } else { for (int j = 0; j matrix, int n) { if (i == n) { if (isValid(matrix)) count++; return; } else { for (int j = 0; j matrix, int n) { if (i == n) { if (isValid(matrix)) result.add(new ArrayList(matrix)); return; } else { for (int j = 0; j list){ int row = list.size() - 1; int col = list.get(row); for (int i = 0; i <= row - 1; i++) { int row1 = i; int col1 = list.get(i); if (col == col1) return false; if (row1 - row == col1 - col) return false; if (row1 - row == col - col1) return false; } return true;}
关键字:leetcode, leaf, return, int
版权声明
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处。如若内容有涉嫌抄袭侵权/违法违规/事实不符,请点击 举报 进行投诉反馈!