自话蚁群算法(带简单模拟实验)

原文地址:http://breezedust.com/2016/07/10/zi-hua-yi-qun-suan-fa-jian-dan-mo-ni-shi-li/

这算是填3年前的一个坑吧,已经懒癌晚期了,想必也还是要挣扎下,那今天先从蚁群算法这个坑说起,如果你是要寻找怎么优化蚁群算法,可以直接跳过本文,如果你还不了解什么是蚁群算法,或许本文能够提起你的兴趣。

如果你同样对遗传算法和粒子群算法感兴趣,请查看3年前我对于这两个算法见解的文章。

  1. 自话粒子群算法(超简单实例)

  2. 自话遗传算法(带实例)

简单蚁群算法模拟实验:

  1. Demo

  2. Github

这个模拟实验比较简单,并没有对信息素、路径选择等做优化,主要是方便大家查看简单的蚂蚁系统能够带来一个什么样的效果,详细说明见后文。

什么是蚁群算法

按百度百科的话来说,蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法。它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质,并且现在已用于我们生活的方方面面。

基本原理

蚂蚁在运动过程中,会留下一种称为信息素的东西,并且会随着移动的距离,播散的信息素越来越少,所以往往在家或者食物的周围,信息素的浓度是最强的,而蚂蚁自身会根据信息素去选择方向,当然信息素越浓,被选择的概率也就越大,并且信息素本身具有一定的挥发作用。 蚂蚁的运动过程可以简单归纳如下:

  1. 当周围没有信息素指引时,蚂蚁的运动具有一定的惯性,并有一定的概率选择其他方向

  2. 当周围有信息素的指引时,按照信息素的浓度强度概率性的选择运动方向

  3. 找食物时,蚂蚁留下家相关的A信息素,找家时,蚂蚁留下食物相关的B信息素,并随着移动距离的增加,洒播的信息素越来越少

  4. 随着时间推移,信息素会自行挥发

一个简单的例子,如果现在有两条通往食物的路径,一条较长路径A,一条较短路径B,虽然刚开始A,B路径上都有蚂蚁,又因为B比A短,蚂蚁通过B花费的时间较短,随着时间的推移和信息素的挥发,逐渐的B上的信息素浓度会强于A,这时候因为B的浓度比A强,越来越多多蚂蚁会选择B,而这时候B上的浓度只会越来越强。如果蚂蚁一开始只在A上呢,注意蚂蚁的移动具有一定小概率的随机性,所以当一部分蚂蚁找到B时,随着时间的推移,蚂蚁会收敛到B上,从而可以跳出局部最优。

实验

上面的描述可能不是很形象,现在我们来模拟做个小实验,实验地址Demo,源码已放在 Github

简单蚁群实验环境:

  1. 满足上面4点基本规则,信息素散播规则按照屏幕斜线距离/蚂蚁移动距离,移动距离在找到食物或者家清0(言外之意式,蚂蚁最多能够移动斜线这么远的距离,这个公式比较简单)

  2. 超过一定的移动步数未找到食物或窝的蚂蚁进行重置

  3. 选择方向的计算公式采用单元格浓度/8个方向单元格浓度总和,用轮盘赌进行概率选择

  4. 信息素在每次迭代时,进行统一挥发一个常量值

现在我们来看看蚂蚁是否能够找到最近的食物。

1.首先我们放置一个较远的食物A,图中的绿色为食物,白色为蚂蚁,暗蓝色为家相关的信息素,颜色深浅代表浓度。

注意:我们上面采用的信息素洒播规则,会让家相关的信息素浓度围绕着家呈梯形分布,这样蚂蚁在回家时,能够根据浓度找到家,食物相关信息素也一样。感兴趣的朋友可以在源码里修改信息素显示参数,显示食物相关的信息素分布图。

2.过一会儿,我们发现蚂蚁都聚集在这条路径上,然后我们放一个离得很近的食物B

3.最后我们会发现这条路径上的蚂蚁越来越多,再过一会儿,A路径上基本没有什么蚂蚁了。

你有可能问,那障碍是干嘛用的,我当时只是想干一件小时候经常干的事情,如

1.一群蚂蚁找到了食物

2.我拦住了他们的去路

3.最后他们还是找到了食物,坏笑

最后

如果你亲自动手做实验,你会发现,当蚂蚁在一条路径上觅食很久时,你再放置一个近的食物基本没啥效果,你也可以理解为当一只蚂蚁找到一条路径时,过了很久的时间,大多数蚂蚁都选择了这条路径,就在这时候,突然有一只蚂蚁找到了较近的食物,但因为时间过得太久,两条路径上浓度相差太大(浓度越大,被选择的概率就越大),整个系统基本已经停滞了,陷入了局部最优。所以简单的蚂蚁系统是存在一些问题的,如:

  1. 搜索到一定程度,会出现停滞状态,陷入局部最优的情况

  2. 盲目的随机搜索,搜索时间较长

而影响蚂蚁是否能够找到好的最优解,依赖这几个关键因素:

  1. 信息素怎么洒播(比如维持在一个特地范围的值等)

  2. 信息素怎么挥发(除了全局挥发,可以让蚂蚁自身进行局部挥发等手段)

  3. 通过怎样的方式让蚂蚁选择运动方向,减少盲目性和不必要性(给蚂蚁一点点智能和经验)

  4. 给蚂蚁和环境一定的记忆能力能够帮助减少搜索空间

如果你感兴趣,可以去看看诸如最大最小蚁群算法、排序蚁群算法、基于遗传算法的蚁群算法等一系列在基本蚁群系统上的优化和改进,他们对于信息素的使用、蚂蚁方向选择等都有一套成熟的数学模型和经验优化参数。

关键字:JavaScript, 算法, 蚂蚁, 蚁群

版权声明

本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处。如若内容有涉嫌抄袭侵权/违法违规/事实不符,请点击 举报 进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部