创业公司如何作数据分析以及运营?
(一)开篇
摘要: 本文将按照“WHY->WHAT->HOW”的思考方式来阐述下面三个问题:创业公司为什么需要做数据分析?创业公司做数据分析,需要做哪些事情?如何实现这些数据上的需求?从而基于“数据驱动”来做决策、运营与产品。
在过去的一年里,笔者加入了一家移动互联网创业公司,工作之一便是负责数据业务的建设,陆陆续续完成了一些数据系统的实现,来满足公司的数据需求。在创业公司中做数据相关的事情,而且是从零做起,肯定不像很多大公司那样分工明细,所有的工作都要保证在有限的资源下来满足需求。回想起来也蛮有意思,因此想做些总结分享,结合我们的系统来谈一谈如何做数据分析。如果有写的不好的地方,还请网友指正。
作为系列文章的开篇,本文将按照“WHY->WHAT->HOW”的思考方式来阐述下面三个问题:
创业公司为什么需要做数据分析?
创业公司做数据分析,需要做哪些事情?
如何实现这些数据上的需求 ?
WHY
随着移动互联网的发展和大数据思维的普及,越来越多的创业者、投资人开始重视数据的作用,而不再是随便拍脑袋。“数据驱动决策”、“精准化运营”、“产品快速迭代”这些概念被越来越多的人提出和使用,其背后都离不开精准的数据分析。对于大多数互联网创业公司来说,其背后没有强大的资源与财主支撑,如何在有限的人力、物力下快速摸索、少走弯路是至关重要的,而基于“数据驱动”来做决策、运营与产品将起到一个关键的作用。让我们来看两个例子。点击阅读详情
(二)运营数据系统
本文将首先来探讨应用层中的运营数据系统,因为运营数据几乎是所有互联网创业公司开始做数据的起点,也是早期数据服务的主要对象。本文将着重回顾下我们做了哪些工作、遇到过哪些问题、如何解决并实现了相应的功能。
早期 早期数据服务
产品上线开始推广后不久,后台研发人员便会经常收到运营同事的私信:“能不能查一下有多少用户注册了,来自哪里?……..”。几次之后,大家便觉得这样的效率太低了:研发人员需要在繁忙的开发任务中抽时间来做数据查询、统计,而运营同事则需要等很久才能拿到数据。于是,大家开始协商更好的方法,最终达成一致:由运营同事提供所需的数据模板,后台研发人员根据模板将数据导入Excel文件,运营同事可根据自身需求自己分析统计。这便是早期的数据服务了,其组成结构如下图所示。
(三)用户行为数据采集系统
作为系列文章的第三篇,本文将重点探讨数据采集层中的用户行为数据采集系统。这里的用户行为,指的是用户与产品UI的交互行为,主要表现在Android App、iOS App与Web页面上。这些交互行为,有的会与后端服务通信,有的仅仅引起前端UI的变化,但是不管是哪种行为,其背后总是伴随着一组属性数据。对于与后端发生交互的行为,我们可以从后端服务日志、业务数据库中拿到相关数据;而对于那些仅仅发生在前端的行为,则需要依靠前端主动上报给后端才能知晓。用户行为数据采集系统,便是负责从前端采集所需的完整的用户行为信息,用于数据分析和其他业务。
举个例子,下图所示是一次营销活动(简化版)的注册流程。如果仅仅依靠后端业务数据库,我们只能知道活动带来了多少新注册用户。而通过采集用户在前端的操作行为,则可以分析出整个活动的转化情况:海报页面浏览量—>>点击”立即注册”跳转注册页面量—>>点击“获取验证码”数量—>>提交注册信息数量—>>真实注册用户量。而前端用户行为数据的价值不仅限于这样的转化率分析,还可以挖掘出更多的有用信息,甚至可以与产品业务结合,比如笔者最近在做的用户评分系统,便会从用户行为中抽取一部分数据作为评分依据。
(四)ELK日志系统
作为系列文章的第四篇,本文将重点探讨数据采集层中的ELK日志系统。日志,指的是后台服务中产生的log信息,通常会输入到不同的文件中,比如Django服务下,一般会有nginx日志和uWSGI日志。这些日志分散地存储在不同的机器上,取决于服务的部署情况了。如果我们依次登录每台机器去查阅日志,显然非常繁琐,效率也很低,而且也没法进行统计和检索。因此,我们需要对日志进行集中化管理,将所有机器上的日志信息收集、汇总到一起。完整的日志数据具有非常重要的作用:
信息查找。通过检索日志信息,定位相应的bug,找出解决方案。
服务诊断。通过对日志信息进行统计、分析,了解服务器的负荷和服务运行状态,找出耗时请求进行优化等等。
数据分析。如果是格式化的log,可以做进一步的数据分析,统计、聚合出有意义的信息,比如根据请求中的商品id,找出TOP10用户感兴趣商品。
ELK是一套开源的集中式日志数据管理的解决方案,由Elasticsearch、Logstash和Kibana三个系统组成。点击阅读详情
(五)微信分享追踪系统
微信分享,早已成为移动互联网运营的主要方向之一,以Web H5页面(下面称之为微信海报)为载体,利用微信庞大的好友关系进行传播,实现宣传、拉新等营销目的。以下图为例,假设有一个海报被分享到了微信中,用户A与B首先看到了这个海报,浏览后又分享给了自己的好友,用户C看到了A分享的海报,浏览后继续分享给了自己的好友。这便形成了一个简单的传播链,其中蕴含了两种数据:
行为,指的是用户对微信海报的操作,比如打开、分享。
关系,指的是在海报传播过程中,用户之间形成的传播关系,比如用户A将海报传播给C。
这样的数据的意义在于:点击阅读详情
(六)数据仓库的建设
在第二篇运营数据系统一文,有提到早期的数据服务中存在不少问题,虽然在做运营Dashboard系统时,对后台数据服务进行了梳理,构建了数据处理的底层公共库等,但是仍然存在一些问题:
中间数据流失,计算结果没有共享。比如在很多数据报告中都会对同一个功能进行数据提取、分析,但是都是各自处理一遍,没有对结果进行共享。
数据分散在多个数据源,如MySQL、MongoDB、Elasticsearch,很难对多个源的数据进行联合使用、有效组织。
每个人都需要非常清楚产品业务逻辑才能正确地提取、处理数据,导致大家都将大量时间耗费在基础数据处理中。
于是,我们考虑建设一个适于分析的数据存储系统,该系统的工作应该包含两部分:点击阅读详情
来源:36大数据,作者:Mr-Bruce;
关键字:创业, 数据
版权声明
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处。如若内容有涉嫌抄袭侵权/违法违规/事实不符,请点击 举报 进行投诉反馈!