数据分析不落地?一个案例教会你!
编辑导语:对于不少产品经理来说,掌握数据分析的核心能力并不在于了解丰富的模型和方法论,而是能敏锐的发现数据并且从中找出潜在规律。数据分析始终不能落地?这有一个案例,希望能对你有帮助。
- “你做的数据分析,一点都不落地!”
- “除了写数字,能不能有落地建议!”
- “看了数,所以呢?要干啥?”
这一类抱怨,经常在办公室响起,让做数据的同学很郁闷。到底咋做算落地?今天通过一个例子,系统讲解一下。
问题场景:某大型售后连锁服务商,同时承接厂商、企业、个人的服务需求,由客服接需求以后生成工单,分配给自营的服务点或外包的服务商,上门完成服务。现在已定下,北极星指标是:实际完成工单件数,问:如何做进一步落地分析。
01 数据落地的常见错误
很多同学一看到问题,就说:老师,这题我会!工单=需求数*转化率吗,既然要提高完成工单件数,那要做的就是,把需求数和转化率两个指标:搞高!
所以数据落地的方式,就是:
- 一要多签厂商客户
- 二要多签企业客户
- 三要做大个人流量
- 四要提高客服效率
- 五要加强上门管理
- 六要提升师傅技能
你看,这建议多具体,多落地……
首先,这么说确实没错,确实这些指标要搞高,确实这六条都是建议,问题是:这些都是正确的废话,即使不做数据分析师,大家也“早就知道了”,那肯定要搞高呀,还能搞低不成。
从数据推导业务落地行动,核心是:轻重缓急。通过数据分析找到哪里是重点,哪些是辅助,这才是数据计算的价值。如果不加计算,那人人都知道这也要加强,那也要加强。
1. 第一步:梳理业务流程
想落地第一步,就是停止在数据层面:坐而论数,就数论数。
数据到底从哪个业务流程里来,又受哪个流程影响,得先理清楚。业务层的梳理,一般由粗到细,剥洋葱般层层深入。比如本案例中,虽然涉及业务的角色很多,但以客服收到线索为界限,可以划分为:需求/供给量大部分。
如下图:
目标是提高完成工单数量,第一级要做的轻重缓急判断,就是:需求/供给是否匹配。
仅看单个月份/整体供需情况,可能有三个状态:
- 需求≥供给
- 需求=供给
- 需求≤供给
第一级判断,决定了后续落地方向:
- 需求≥供给,提升供给能力
- 需求=供给,持续观察/降低供给成本
- 需求≤供给,发展客户,扩大需求
这就是V1.0的落地建议。注意,真实建议不会给得这么口语化,而是经过计算的:
这一步看起来简单,其实也暗藏玄机:怎么判断到底哪头大?
2. 第二步:树立判断标准
判断标准,绝不是让老板拍个脑袋那么简单。需求≤供给相对容易观察,比如售后师傅人均工单数少、平均工资低、人员流失多等等。
但需求≥供给,很有可能是没有数据记录的。比如个人客户打电话进来,结果约不到师傅;企业客户打电话进来,要排队很久才能修理,但是因为签的是年度合同,所以一时半会不会翻脸。
这些情况都使得评估供给能力存在困难,数据不真实情况。等企业客户流失的时候才反应过来,已经太晚了。
因此,树立标准最好单独做分析。比如厂商/企业客户,需要匹配合同签约时服务条款(比如接单24小时内处理完毕);对个人客户,需要看客户发起需求后完成率,并且从完成率中,剔除客户原因(询价后嫌贵、上门找不到人、随口问问等情况)才能算出来相对准确的数字。
这是寻找判断标准的工作,建立标准工作后,还得跟各部门共识,才能达成一致认可。
这一步很重要,很多同学之所以难以落地,从第一步就是:只有数字,没有判断。或者判断条件不严谨,导致后边一深入,发现有很多业务上定义模糊,相互扯皮的地方。
这样自然落不下去,如下图:
3. 第三步:从短期到长期
注意:时间拖长,可能有季节性变化。比如特定设备在夏季/冬季使用频率高,更容易出故障。因此基于一个月份建立标准后,可以看一整年的情况,进一步锁定问题。
比如整体情况是:需求≥供给,但是:
- 偶尔性(1、2个月)
- 经常性(连续发生大于3个月)
- 持续性(新上/临近报废)
- 季节性(特定季节发生)
对应的轻重缓急也是不同的,能引导出的落地建议也不同,如下图:
4. 第四步,找重点、抓重点
整体情况确定以后,再看局部问题。比如在第一阶段,锁定了问题来自:供给端,就是供给不够,那么该怎么进一步分析呢?
首先,业务有三条线,三条线谁是重点,要先区分出来。因为厂商/企业这种toB类客户和toC类个人用户,是根本两个发展思路,不仅当前在工单总数中占比不同,而且对未来发展重要性也不同,很有可能toB才是公司生命线。
在不同重要性影响下,即使当前数据相同,对未来发展的判断也可能是不同的,要先做判断,再往下细看,如下图:
5. 第五步,从整体到局部
其次,售后服务是分区域交付的,因此哪个区域特别严重,哪个区域例外,再分出来。这个相对容易理解,每个区域的客户需求,门店/师傅配置都不同,很可能边远地区还是二次外包出去的,因此锁定问题点,也有助于:抓大放小,先解决问题突出的地区。
这里又有策略上差异:如果真看到某个地区需求特别旺盛,且都是外包在做,很有可能会选择“更换掉外包,自己设一个服务点”而不是“该外包需保持业绩发展趋势”。在落地上,从来都不是哪个指标好了就保持,也不是哪个差了就改进的,很有可能有第三选择。
6. 第六步,从局部到细节
最后,售后服务是分2个环节执行的,到底是客服派单慢,还是售后执行差,再分出来。
这个分解最为复杂。因为客服派单派不出去,很有可能是因为该区域/该大客户服务团队的工作已经饱和了,或者是因为节假日等正常原因,或者是因为在等零件调货等客观原因,所以不拿到接到单以后的服务团队/配套情况/节假情况等明细数据,很难说清楚到底是派单员的问题,还是服务的问题。
在考虑落地方案的时候,越细节的问题,越放在后边解决。因为很有可能落到特别细的细节以后,你会发现根本没有数据……手头有啥数据就用啥,这也是分析的基本原则。
7. 第七步,从数据到管理
面对细节数据缺失,可以用管理手段配合数据建设。比如要求客服在首次接单且售后无异常的情况下,接单30分钟内完成分配,有异常就人工反馈标注。
还可以提前对各地区配件数库存进行检查,提前标注缺货标签,这样分析的时候,能区分哪些因为等配件而延迟。还可以要求服务师傅上门前/服务完成后进行系统打卡登记,这样统计师傅在岗情况,从而反推是否师傅已饱和。
注意,这些管理手段本身对业绩也是有帮助的。可以提前发现配套问题,可以监控一线行为奖励多劳多得,可以及时发现有增长潜力的地区。
所以,用这些业务上利益点做诱饵,是可以推动管理手段落地的,进而达到采集数据的目的,从而一举两得。如果没有好的管理手段,很有可能数据都采集不上来,自然也无法落地。如果没有业务上利益点,即使高层强力介入,强行把软件推下去,业务不配合、乱填一通,数据还是一塌糊涂。
02 小结
想把数据落地,就是这样一步步从粗到细,剔除各种异常,击中要害,最后靠和管理手段结合落地。
而不是简单地:
- 哪个指标低了就搞高
- 哪个指标高了就保持
也更不是出一套“神威无敌大将军模型”就能搞掂的。比如有的同学一看:诶呀!有客服派单!立马条件反射般:我们效仿滴滴/美团,建立人工智能派单模型。
那个,这是售后业务耶,机器的损坏率可不会像打车/外卖一样天天持续,需求就那么多。且上门还牵扯配件问题,哪里能随便乱套。所以想做的细,就得深入业务流程,耐着性子剥洋葱。
作者
接地气的陈老师,微信公众号:接地气学堂。资深咨询顾问,在互联网,金融,快消,零售,耐用,美容等15个行业有丰富数据相关经验。
关键字:数据分析
版权声明
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处。如若内容有涉嫌抄袭侵权/违法违规/事实不符,请点击 举报 进行投诉反馈!