推荐系统

产品经理需要了解:推荐系统和搜索引擎的关系

本文作者结合自己的实践经验来为大家阐述推荐系统和搜索引擎两者之间的关系、分享自己的体会。从信息获取的角度来看,搜索和推荐是用户获取信息的两种主要手段。无论在互联网上,还是在线下的场景里,搜索和推荐这两种方式都大量并存,那么推荐系统和搜索引擎这两个系统到底有什么关系?区别和相似的地方有哪些?本文作者有幸同时具有搜索引擎和推荐系统一线的技术产品开发经验,结合自己的实践经验来为大

4个方面,系统总结个性化推荐系统

大部分人都听说过个性化推荐,也知道千人千面,那么个性化推荐系统到底是怎么样的?最近做了一点总结。现在的人们面对信息过载问题日益严重,好的个性化推荐将能够很好的提升用户体验,提高用户使用产品完成任务的效率,更好的留住用户,进一步扩大产品的盈利。对于一些电商类的产品,个性化推荐也能帮助减少马太效应和长尾效应的影响,使商品的利用率更高,盈利增长。【注】马太效应:产品中热门的东西会

从用户场景看什么是推荐系统

推荐系统的本质是什么?使用场景有哪些?在本文中,作者对推荐系统展开分析,希望对你有所帮助。一、推荐系统的本质是什么?很早很早之前,信息很少,我们的信息获取和查找也很不方便,即便是有了电脑和互联网,我们也极少采用“线上解答”的方式,我们凭借以往的经验,快速获取自己的目标信息。慢慢的信息量变大了,我们需要分类来协助我们查找信息,这时出现了门户分类网站;再后来,信息过载了,分类也

CB算法:基于内容的推荐算法的基本原理

推荐系统能有效帮助用户快速发现感兴趣和高质量的信息,增加用户使用产品的时长。推荐系统越精准,用户的使用体验就越好,产品越容易留住用户。近几年,今日头条、抖音等产品的诞生,也使得基于内容的推荐算法这一古老算法的崛起。本文将简要阐述基于内容的推荐算法的基本原理,enjoy~基于内容的推荐算法是众多推荐算法中的一种,是一种机器学习算法。可以说推荐系统算法是机器学习算法应用在我们生

数据算法:推荐系统的实践与思考(上)

本文内容来自神策数据《智能推荐——应用场景与技术难点剖析》闭门会分享内容整理,分享者将我们介绍:如何从四个方面做一个推荐系统。在工作中,大家遇到的与推荐系统相关的问题是:“数据太稀疏、数据没有形成闭环、数据没办法跟其他系统结合”等等。这些内容是摆在我们面前的实际问题,那么当我们真正要开始做一个推荐系统时,需要从几方面考虑问题呢?算法:到底应该选择什么样的算法?无论是协同过滤

数据中台实战:基于标签的推荐系统必须要解决的4个核心问题

在推荐系统中,标签的使用可以让定位更精准,提升匹配的水平和效率。那么,在业务过程中,我们应当采用哪种标签推荐方式?本篇文章里,作者结合实际经验,总结了如何利用数据中台解决问题、搭建符合实际业务的标签推荐系统,一起来看一下。最近公司开了个新的产品线叫:圆猿买手,大家都知道我公司搭了一个B2B的女装批发平台,主要服务的是全国做服装批发生意的采购商、供应商。圆猿买手这个

5000字,从0到1构建推荐系统

伴随着移动互联网的快速发展与信息量的飞速增长,如今用户可能每天都需要接收海量级别的信息。而推荐系统的产生让用户在一定程度上可以更精准地接收自己所需信息。那么,如何搭建好一个推荐系统?本文作者结合自身经验,总结了从0到1搭建推荐系统的一套方法,一起来看一下。一、前言本文主要是笔者在负责实际项目中积累的关于推荐系统的皮毛认知和理解。原先都是以用户的身份接触推荐系统,所

推荐系统技术 --- 文本相似性计算(二)

第一篇地址:https://segmentfault.com/a/1190000005270047上一篇中我们的小明已经中学毕业了,今天这一篇继续文本相似性的计算。首先前一篇不能解决的问题是因为我们只是机械的计算了词的向量,并没有任何上下文的关系,所以思想还停留在机器层面,还没有到更高的层次上来,正因为这样才有了自然语言处理这门课程了。今天我们稍微说说这个吧,后台留言很多朋

小白产品必看的推荐系统四步指南!

互联网使得信息传播从传统的纸媒到如今去中心化的UGC方式。当海量的信息进行分发时,作为产品设计者,我们需要考虑的问题是如何做好内容分发系统。今日头条为我们提供的一个方向——算法推荐。那么,作为一个新产品,该如何从0到1完成一个推荐系统,作者总结了四步,与你分享。互联网使信息传播从传统的中心化纸媒逐渐变成了去中心的UGC方式。在这个时代每个人都可以是信息生产者,可以

推荐系统技术文本相似性计算(三)实战篇

前两篇可以直接看我的专栏或者文本相似性计算(一)文本相似性计算(二)前面说了两篇了,分别介绍了TFIDF和向量空间的相关东西,然后介绍了主题模型,这一篇我们就来试试这两个东西。词向量就不在这篇试了,词向量和这两个关系不大,不好对比,不过我最后也给出了代码。0. 工具准备工欲善其事,必先利其器,那么我们先来利其器,这里我们使用的是python的gensim工具包,地址是:ht