什么是职场人的“AI敏锐度”

当我们在给不同的公司做AI项目咨询的时候,几乎每个公司的主管或HR都会问同样的问题:现在AI的发展这么快,我要怎么把非产研的同学们也都培养一下,大家能更好地使用AI,提升工作效率?

由于这个问题提出频繁,也促使我们去思考:在AI时代,当公司提出“无论你是什么岗位,都要加强对AI的使用”的时候,个人应该怎么应对?有哪些必备技能和认知是需要补齐的。基于此,我们做了一些调研,在此和感兴趣的朋友做一个分享。

一、公司的需求是什么?

当公司谈到“我们希望员工AI能力能有所提升时”,背后的潜在诉求是什么?掌握AI的技术原理?了解AI技术的前沿发展?根据我们和公司主管或HR的交流,其实都不是。

公司的本质的需求还是“提质增效”。

引用一位高管的原话:“我希望提升员工的AI敏锐度,这样工作可以完成得更快、交付质量更高。”所以,AI的理论、技术掌握并不是重点,公司更期待的是“人+AI → 工作产出”的效率链。

二、产出导向的“AI敏锐度”

那么,如何能让这个问题得以解决?我们查阅了相关的研究,发现国内外的主流观点可以总结为以下这个“三层次”。

第一层:对AI的正确认知

正如吴恩达在AI for everyone里所说的,AI和人类目前在职场上其实并不是“替代”的关系。因为人能完成的是“Job”,而AI能处理的只是“Task”,所以与其说是AI会替代人,更不如说是互补和协作的关系。

另外,发表在《Science》杂志上的研究文章Experimental evidence on the productivity effects of generative artificial intelligence也提到,目前LLM能处理的工作有它的边界,并不是所有的工作任务都擅长。

这篇文章将工作任务分为两类:一类是在AI能力范围内的任务,另一类是在AI能力范围之外但对于人类可能相对容易完成的任务。

这两类任务的难度相近,但基于任务属性的不同,一类在AI能力范围内,另一类对于AI来说较为复杂且具有挑战性。然后研究发现,AI擅长的任务是创造性任务。

例如,在某个尚未受到足够关注的特定市场或运动领域提出10个创意点子,此类任务是AI擅长的,因为它涉及到创造力的工作。然而,AI不擅长的任务是基于详实数据和访谈给出一个准确答案,即需要根据这些数据指向一个正确答案的任务。

因此,从职场人的角度,我们需要对AI的“边界”和使用条件有清晰的认知——知道什么样的工作是适合AI来做的,什么样的工作还是得自己上;并且能判断和选择使用合适的AI工具来完成对应的工作。

第二层:人机协作技能

有了清晰的认知,那么在真正的人机协作中,个人确实需要一些实操技巧来让LLM能更好地产出结果。这部分的能力主要以“提问为主”,即:员工知道在什么样的工作场景中用合适的方法向LLM获得最佳的结果。这部分通常分为三类:

  • 对提示词通用模版的掌握程度:是否提示词通用模版中各个模块的设计技巧,如“角色、任务、要求”等。
  • 掌握提示词的进阶技巧:如Few shot,COT等等,并能正确高效地使用。
  • 对常用的工作场景,如写作任务、创意生成、方案产出等,能通过LLM获得好的产出。

第三层:“人”的底层能力

关于人机协作的研究中,还有一个很有趣的发现,就是关于“能力的迁移和重塑”。研究者发现,由于有了AI,过往我们在职场中看中的一些“技能”,如:写作和表达、excel能力等,并不是那么重要了,因为有了AI这个工具,人和人在技能上的差距在逐步变小。反而是在这些技能之下更“深层”的职场软实力,会变得更重要。比如:

  • 分析和判断能力:与AI的合作过程中,个体要扮演判断者的角色,能在AI协作中判断出值得进一步探索的答案和方向、哪些并不值得去做,等等。
  • 目标解构能力:当面对复杂任务时,个体能有效拆解和重组任务,来确定哪些是AI介入的task,哪些是人类自己需要发挥的。
  • 创造力:AI的创新力往往局限于细节内容的生成,如生成10条创新的文案、生成10种不同的营销策略等……但是,在大方向上的突破和颠覆,依然还是要靠人类自己的努力思考和创新。因此,创新力也是在AI时代中,个人需要的核心底层能力。
作者:AI 实践干货
两位深耕AI产品设计的宝藏女孩 不间断实践干货分享

版权声明

本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处。如若内容有涉嫌抄袭侵权/违法违规/事实不符,请点击 举报 进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部