「管理数学基础」3.1 凸分析:凸集与凸集分离定理、Farkas引理

凸集与凸集分离定理、Farkas引理

文章目录

  • 凸集与凸集分离定理、Farkas引理
    • 凸集
      • 定义:凸集
      • 凸集性质(逐个证明)
    • 超平面
      • 定义:超平面
      • 证明:超平面是凸集
      • 定义:支撑超平面
      • 定义:多面体
      • 定义:凸锥
    • 凸集分离定理
      • 定义:分离
      • 定义:凸集分离定理
    • Farkas引理
      • 定义:Farkas引理
      • 证明:Farkas引理

凸集

定义:凸集

注意凸集的定义,任取两点满足某个条件为凸集:

  • 证明是凸集的目标有了
  • 凸集的性质也有了,可以利用

凸集性质(逐个证明)

(1)


分析:

  • 任取 x A , y A ∈ λ C x_A,y_A \in \lambda C xA,yAλC,因为是要证明 λ C \lambda C λC是凸集
  • 也就是要对于所有的 x A , y A ∈ λ C , β ∈ [ 0 , 1 ] x_A,y_A \in \lambda C,\beta \in [0,1] xA,yAλC,β[0,1],都有 β x A + ( 1 − β ) y A ∈ λ C \beta x_A + (1-\beta) y_A \in \lambda C βxA+(1β)yAλC
  • 能利用的性质只有 C C C是凸集以及 C C C λ C \lambda C λC两个集合的关系(从微观上,一定存在 C C C中元素乘上实数 λ \lambda λ λ C \lambda C λC中),应该在二者间建立联系

(2)


分析:

  • 与上一题思路相同

(3)

有限个凸集的交集为凸集。

由以上凸集性质,我们做下面两点例题。

分析:

  • 分别在集合间取元素,根据集合性质建立元素间关系
  • 然后带回去,这样从原理出发计算不会出错

超平面

定义:超平面

分析:

  • a ′ x = b a' x = b ax=b R 2 R^2 R2是直线,在 R 3 R^3 R3是平面,在 R k , k > 3 R^k,k>3 Rk,k>3当然就是超平面了
  • 注意 a a a实际上超平面的法向量,与超平面垂直; b ∈ R 1 b\in R^1 bR1决定了超平面的位置
  • 闭半空间一共有两个(一侧的点与法向量构成锐角,一侧是锐角)

证明:超平面是凸集

很简单,对于闭半空间是凸集同理,将 = = =换成 ≤ \le ≥ \ge 即可。

定义:支撑超平面

分析:

  • “支撑”即超平面对这个空间的生成起了作用,“触碰”到了这个空间

定义:多面体

多面体:

  • 是多胞形(上图的多胞形定义,我觉得不对)
  • 有界非空

定义:凸锥

分析:

  • 经过原点 0 ⃗ \vec{0} 0 ,因此超平面中 b = 0 b=0 b=0
  • λ 1 x \lambda_1 x λ1x λ 2 y \lambda_2 y λ2y 相加,实际上表示了两个超平面的中和,即相互趋近

凸集分离定理

定义:分离

分析:

  • 两个非空集合,可以被几何的概念(超平面)分开,不重叠(但是可以重叠在超平面上)
  • 如果没有 ≤ \le ≥ \ge 即等号关系,则是严格分离

定义:凸集分离定理

如上是凸集分离定理(如果两个集合是不相交的凸集,那么可以被一个超平面分开)。

证明过程很长,证明并应用了:Weierstrass定理、点集严格分离定理、支撑超平面定理。

Farkas引理

定义:Farkas引理

用于后面的凸规划,这里注意一点:

  • (1)有解了,(2)必无解

证明:Farkas引理

首先,假设(1)有解,证明(2)无解即可;接着证明(1)无解情况下,(2)必有解,大概思路是:

  • ∀ y ∈ S \forall y \in S yS,由(1)无解可得 b ∉ S b \notin S b/S,由此,利用点集分离定理,得到 p ′ b < p ′ y p' b < p' y pb<py
  • 进一步,由 0 ∈ S 0 \in S 0S,则有 p ′ b < 0 p'b < 0 pb<0,现在(2)的第二个式子已经证明完毕了,接下来是第一个式子 p ′ A ≥ 0 p'A \ge 0 pA0的证明


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部