python多进程学习笔记

multiprocessing模块

multiprocessing包是Python中的多进程管理包。它与 threading.Thread类似,可以利用multiprocessing.Process对象来创建一个进程。该进程可以允许放在Python程序内部编写的函数中。该Process对象与Thread对象的用法相同,拥有is_alive()、join([timeout])、run()、start()、terminate()等方法。属性有:authkey、daemon(要通过start()设置)、exitcode(进程在运行时为None、如果为–N,表示被信号N结束)、name、pid。此外multiprocessing包中也有Lock/Event/Semaphore/Condition类,用来同步进程,其用法也与threading包中的同名类一样。multiprocessing的很大一部份与threading使用同一套API,只不过换到了多进程的情境。

这个模块表示像线程一样管理进程,这个是multiprocessing的核心,它与threading很相似,对多核CPU的利用率会比threading好的多。

看一下Process类的构造方法:

__init__(self, group=None, target=None, name=None, args=(), kwargs={})
  • 1

参数说明: 
group:进程所属组。基本不用 
target:表示调用对象。 
args:表示调用对象的位置参数元组。 
name:别名 
kwargs:表示调用对象的字典。

创建进程的简单实例:

#coding=utf-8
import multiprocessingdef do(n) :#获取当前线程的名字name = multiprocessing.current_process().nameprint name,'starting'print "worker ", nreturn if __name__ == '__main__' :numList = []for i in xrange(5) :p = multiprocessing.Process(target=do, args=(i,))numList.append(p)p.start()p.join()print "Process end."

执行结果:

Process-1 starting
worker  0
Process end.
Process-2 starting
worker  1
Process end.
Process-3 starting
worker  2
Process end.
Process-4 starting
worker  3
Process end.
Process-5 starting
worker  4
Process end.

创建子进程时,只需要传入一个执行函数和函数的参数,创建一个Process实例,并用其start()方法启动,这样创建进程比fork()还要简单。 
join()方法表示等待子进程结束以后再继续往下运行,通常用于进程间的同步。

注意: 
在Windows上要想使用进程模块,就必须把有关进程的代码写在当前.py文件的if __name__ == ‘__main__’ :语句的下面,才能正常使用Windows下的进程模块。Unix/Linux下则不需要。

Pool类

在使用Python进行系统管理时,特别是同时操作多个文件目录或者远程控制多台主机,并行操作可以节约大量的时间。如果操作的对象数目不大时,还可以直接使用Process类动态的生成多个进程,十几个还好,但是如果上百个甚至更多,那手动去限制进程数量就显得特别的繁琐,此时进程池就派上用场了。 
Pool类可以提供指定数量的进程供用户调用,当有新的请求提交到Pool中时,如果池还没有满,就会创建一个新的进程来执行请求。如果池满,请求就会告知先等待,直到池中有进程结束,才会创建新的进程来执行这些请求。 
下面介绍一下multiprocessing 模块下的Pool类下的几个方法

apply()

函数原型:

apply(func[, args=()[, kwds={}]])

该函数用于传递不定参数,主进程会被阻塞直到函数执行结束(不建议使用,并且3.x以后不在出现)。

apply_async()

函数原型:

apply_async(func[, args=()[, kwds={}[, callback=None]]])

与apply用法一样,但它是非阻塞且支持结果返回进行回调。

map()

函数原型:

map(func, iterable[, chunksize=None])

Pool类中的map方法,与内置的map函数用法行为基本一致,它会使进程阻塞直到返回结果。 
注意,虽然第二个参数是一个迭代器,但在实际使用中,必须在整个队列都就绪后,程序才会运行子进程。

close()

关闭进程池(pool),使其不在接受新的任务。

terminate()

结束工作进程,不在处理未处理的任务。

join()

主进程阻塞等待子进程的退出,join方法必须在close或terminate之后使用。

multiprocessing.Pool类的实例:

import time
from multiprocessing import Pool
def run(fn):#fn: 函数参数是数据列表的一个元素time.sleep(1)return fn*fnif __name__ == "__main__":testFL = [1,2,3,4,5,6]  print 'shunxu:' #顺序执行(也就是串行执行,单进程)s = time.time()for fn in testFL:run(fn)e1 = time.time()print "顺序执行时间:", int(e1 - s)print 'concurrent:' #创建多个进程,并行执行pool = Pool(5)  #创建拥有5个进程数量的进程池#testFL:要处理的数据列表,run:处理testFL列表中数据的函数rl =pool.map(run, testFL) pool.close()#关闭进程池,不再接受新的进程pool.join()#主进程阻塞等待子进程的退出e2 = time.time()print "并行执行时间:", int(e2-e1)print rl

执行结果:

shunxu:
顺序执行时间: 6
concurrent:
并行执行时间: 2
[1, 4, 9, 16, 25, 36]

上例是一个创建多个进程并发处理与顺序执行处理同一数据,所用时间的差别。从结果可以看出,并发执行的时间明显比顺序执行要快很多,但是进程是要耗资源的,所以平时工作中,进程数也不能开太大。 
程序中的r1表示全部进程执行结束后全局的返回结果集,run函数有返回值,所以一个进程对应一个返回结果,这个结果存在一个列表中,也就是一个结果堆中,实际上是用了队列的原理,等待所有进程都执行完毕,就返回这个列表(列表的顺序不定)。 
对Pool对象调用join()方法会等待所有子进程执行完毕,调用join()之前必须先调用close(),让其不再接受新的Process了。

再看一个实例:

import time
from multiprocessing import Pool
def run(fn) :time.sleep(2)print fn
if __name__ == "__main__" :startTime = time.time()testFL = [1,2,3,4,5]pool = Pool(10)#可以同时跑10个进程pool.map(run,testFL)pool.close()pool.join()   endTime = time.time()print "time :", endTime - startTime

执行结果:

213
4
5
time : 2.51999998093

再次执行结果如下:

1
342
5
time : 2.48600006104

结果中为什么还有空行和没有折行的数据呢?其实这跟进程调度有关,当有多个进程并行执行时,每个进程得到的时间片时间不一样,哪个进程接受哪个请求以及执行完成时间都是不定的,所以会出现输出乱序的情况。那为什么又会有没这行和空行的情况呢?因为有可能在执行第一个进程时,刚要打印换行符时,切换到另一个进程,这样就极有可能两个数字打印到同一行,并且再次切换回第一个进程时会打印一个换行符,所以就会出现空行的情况。

进程实战实例

并行处理某个目录下文件中的字符个数和行数,存入res.txt文件中, 
每个文件一行,格式为:filename:lineNumber,charNumber

import os
import time
from multiprocessing import Pooldef getFile(path) :#获取目录下的文件listfileList = []for root, dirs, files in list(os.walk(path)) :for i in files :if i.endswith('.txt') or i.endswith('.10w') :fileList.append(root + "\\" + i)return fileListdef operFile(filePath) :#统计每个文件中行数和字符数,并返回filePath = filePathfp = open(filePath)content = fp.readlines()fp.close()lines = len(content)alphaNum = 0for i in content :alphaNum += len(i.strip('\n'))return lines,alphaNum,filePathdef out(list1, writeFilePath) :#将统计结果写入结果文件中fileLines = 0charNum = 0fp = open(writeFilePath,'a')for i in list1 :fp.write(i[2] + " 行数:"+ str(i[0]) + " 字符数:"+str(i[1]) + "\n")fileLines += i[0]charNum += i[1]fp.close()print fileLines, charNumif __name__ == "__main__":#创建多个进程去统计目录中所有文件的行数和字符数startTime = time.time()filePath = "C:\\wcx\\a"fileList = getFile(filePath)pool = Pool(5)  resultList =pool.map(operFile, fileList)  pool.close()pool.join()writeFilePath = "c:\\wcx\\res.txt"print resultListout(resultList, writeFilePath)endTime = time.time()print "used time is ", endTime - startTime

执行结果:

1 
耗时不到1秒,可见多进程并发执行速度是很快的。


本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场,不承担相关法律责任。如若转载,请注明出处。 如若内容造成侵权/违法违规/事实不符,请点击【内容举报】进行投诉反馈!

相关文章

立即
投稿

微信公众账号

微信扫一扫加关注

返回
顶部