产品测试过程中,T 检验的实践运用(一)
大学的统计学知识,你是否还记得?本文作者将用最精炼的语言和简单的案例,让你能够快速将T检验运用到实战当中。因为不用纠结过多的统计学理论而不能自拔,知道怎么运用即可。
作为一个产品经理,在经过一系列坎坷将需求方案落地后,判断方案效果的好坏就是一个非常重要的步骤了,在产品大范围发布前,我们通常要进行小样本量的范围测试;这些测试我们也可以分为线上和线下。实体产品通常会邀请顾客到店体验产品,收集用户反馈;互联网产品大部分公司会设计一个简单的线上测试方案,通过观察用户行为数据来判断方案的效果,在成本允许的情况下,做线下用户测试同样是非常必要的。
那么,对于样本量较低的测试方案,如何判断产品效果的好坏?如果你邀请了10个用户来体验你的产品,10个用户反馈给你的信息都很棒,那么你的产品就一定能满足大部分目标客户的需求吗?在你纠结的时候,不要着急,T检验就可以用来实战了,这种简单而常用的检验方法线上线下两者通吃,本系列将通过三个例子让你完全了解T检验的实战方式。
如果你已经把大学的统计学知识忘记的差不多了,别担心,笔者将用最精炼的语言和简单的案例让你能够快速将T检验运用到实战当中,不用纠结过多的统计学理论而不能自拔,知道怎么运用即可。
你需要了解的2个关键的前置知识点:
- T检验的升级版其实是Z检验,T检验只是Z检验的替代版,但是80%的情况下我们会使用T检验,因为Z检验的使用前提是总体均值已知,但是这个条件在如今情况下几乎是不可能的,(比如全国人民的平均身高,你需要每个人都量一遍吗?)。在总体均值未知,样本量较小的情况下(一般是样本量 分数段 得分
感官体验 0-10 4
交互体验 0-10 7
浏览体验 0-10 6
情感体验 0-10 7
信任体验 0-10 8
平均得分 6.4
我们邀请28个目标用户,事先与其沟通好每种体验的正确体验方式,得出了28人的体验平均得分样本:
6.2,5.3,8.7,7.4,5.2,6.9,8.3,4.4,7.8,6.5,5.9,5.3,5.4,7.5,7.4,4.3,8.5,6.9,6.4,4.7,8.7,6.4,9.2,6.3,4.7,6.5,5.4,7.1
我们假设用户体验的行业及格平均分的标准为6分。
那么,我们提出的问题是,此产品的用户体验平均得分是否超过行业及格标准分?
1. 提出问题,设定0假设和对立假设
(1)0假设
此产品的用户体验平均得分等于行业及格平均分。
(2)对立假设
此产品的用户体验平均得分大于行业及格平均分。
2. 确定样本的均值和样本标准偏差
根据样本数据我们求得:
3. 确定SEM(均值标准误差)
4. 确定95%的置信水平下t临界值
自由度
因为我们设置的对立假设为,所以此检验为单尾检验,根据95%置信水平查询T表格得:
t临界 = 1.703
5. 确定t值
6. 得出结论
根据t值与t临界值之间的关系,我们拒绝0假设,我们可以判断此产品的用户体验及格,并且此产品的用户体验平均得分大于行业及格平均分。
7. 确定95%置信区间
根据公式:
我们算出95%置信区间为(6.13,6.96),也就是说此产品如果计算所有用户的用户体验平均得分,那么评分的总体均值大概会落在6.13~6.96之间。
至此我们完成了一个定性数据定量化的简单案例,有了这个数据,我们可以更加直观的对产品的用户体验做出判断,这就是单样本T检验的应用案例之一。
下期我们将会讲解接下来的两种检验方法:独立样本T检验,相依样本T检验。
欢迎拍砖。
文/白子
关键字:产品经理
版权声明
本文来自互联网用户投稿,文章观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处。如若内容有涉嫌抄袭侵权/违法违规/事实不符,请点击 举报 进行投诉反馈!